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Abstract
It is well known that liquid rubidium shows some unusual properties at low densities. The
ab initio SIESTA package and the supercell technique within the linear muffin-tin orbital
method were used to investigate this phenomenon. Electronic structures of liquid rubidium at
different temperatures from the melting point up to the critical point were obtained. The atomic
structure for the supercell technique was simulated for a cluster of 4000 atoms by the
Schommers method on the basis of experimental structure factors of Rb obtained by Tamura
and co-workers at different temperatures (from 373 up to 1973 K). The Kubo–Greenwood
formula was applied for the calculations of the melt conductivity. The results obtained indicate
that the metal–nonmetal transition in liquid rubidium is not connected to the gap at the Fermi
energy in the density of electronic states, but, more likely, with electron localization on some
kind of atomic cluster.

1. Introduction

Liquid alkaline metals are a convenient object for examinations
of the nature and features of density driven metal–dielectric
transitions. The cause of this is that the density of alkaline
metals changes more than three times on heating from
the melting point up to the critical point. Experimental
results on the measurement of the electrical conductivity,
magnetic susceptibilities, nuclear magnetic resonance (NMR)
and neutron diffraction demonstrate unique features of liquid
rubidium at densities smaller than 1.0 g cm−3 [1, 2] (the
rubidium critical temperature, density and pressure are Tc =
2017 K, ρc = 0.29 g cm−3, Pc = 124.5 bar [3]). The data
reveal that the precursors of the metal–nonmetal transition play
an essential role long before critical point. It is possible to
assume that the atomic and electronic structure and dynamics
of electrons also change essentially at temperatures long before
critical. From the scientific point of view, the main interest
is in finding out how the properties of metals vary with large
changes in the density. Two points are especially interesting:

the change in the effective interactions of ions immersed in a
sea of electrons and the correlation between the behavior of
conduction electrons and the disordered state of ions.

The structural changes in thermally expanded liquid
rubidium were measured in a pioneering neutron scattering
experiment [4] and in high precision synchrotron radiation
(SR) diffraction experiments [5]. These experiments indicate
that the continuous metal–nonmetal transition is a result of the
localization of free conduction electrons at nuclei with ongoing
expansion. Although the qualitative explanation is simple, the
quantitative theory is very difficult and requires the treatment
of many-particle effects in disordered states.

Unfortunately, the theory of structure and electronic
properties of liquid metals is still at a primitive stage and
the nature of the phase transition at the liquid–vapor critical
point has not been well understood. The specified problems
are so difficult for the theory of topologically disordered
systems that only simulation techniques can provide more
insight into changes of physical properties of expanded Rb with
density. The most strict and powerful simulation tool now is
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ab initio density functional theory based on quantum molecular
dynamics (QMD). The first QMD simulations for expanded
liquid Rb were carried out in the local density approximation
(LDA) [6, 7]. The most extensive study of expanded liquid
Rb by the generalized gradient approximation (GGA) method,
which suits better inhomogeneous electron density systems
near the critical point, was performed by Kietzmann et al
[8] and Ross et al [9]. The detailed analysis of atomic and
electronic structure changes in expanded Rb has been carried
out carefully in these works, and it has been shown that the
metal–nonmetal transition (MNM) occurs smoothly over a
wide range of temperatures. This is due to the fact that density
decrease is accompanied by such reorganization in atomic
structure when there is monotonic decline of the coordination
number while the increase of interatomic distances is not so
great. In the work [9] the range of Rb density change was
divided into three subranges: above 0.5 g cm−3—the metallic
state, from 0.5 g cm−3 down to 0.3 g cm−3—the region in
which clustering takes place, and lower than 0.3 g cm−3—the
region of Rb dimer gas.

The restricted number of particles in models is the main
deficiency of QMD simulations, that makes the calculation
of electrical conductivity and speculations upon the effects of
localization impossible. Certainly, this number of particles
can be quite enough for the analysis of the atomic and the
electronic density of the explored systems. But, if we want
to calculate some physical properties for which localization
effects are essential (like electrical conductivity or phonon
spectra), we can experience difficulties concerning the small
size of models. For this reason it is important to use models
of maximum size for analyzing properties of expanded alkali
metals. Such an opportunity is given by the quasi-ab initio
LMTO–recursion method that was used by Bose and co-
workers (together with the reverse Monte Carlo method (RMC)
for constructing the atomic configuration of the system) to
calculate the conductivity of liquid and amorphous metals near
the melting point (see, e.g., [10, 11]). This method allows
us to operate with models of 4–5 thousand atoms. In several
works [12, 13] we have improved on the given approach.
The first and basic improvement was the generalization of the
linear muffin-tin orbital (LMTO) method [14] for low density
systems. The computing efficiency of the LMTO method is
based on the use of the atomic sphere approximation. The
atomic sphere approximation (ASA) is valid if it is possible
to divide the space into muffin-tin (MT) spheres centered at
various atomic sites. However, the precision of the calculation
is determined by the magnitude of the MT sphere overlap
and drops strongly with its increase. The latter condition
complicates greatly the build-up of MT spheres for systems
with loose structure. The presence of pores in atomic structure
makes us actually enlarge MT sphere radii, which results
in increase of the overlap. Still, it is possible to maintain
the feasibility of the ASA approximation by injecting so-
called empty spheres (ES), which are MT spheres with smooth
potential in loose systems. But, the insertion of empty spheres
increases the calculation time; therefore it is essential to find
the optimal definition of the ES position, in which the least
number of ES fills all volume of the model with overlapping

in certain limits. We suggest using the method of Delaunay
simplexes [15] for the search for the optimum ES arrangement.
The second modification was exchange of the RMC method for
the more precise Schommers method [16]. Our generalization
of the LMTO method for the case of low densities requires
some additional approximations, such as ES introduction and
extrapolation of LMTO Hamiltonian matrix elements to a wide
range of interatomic distances. Consequently, it is required to
estimate the precision of the method by comparing the results
gained by the Schommers–LMTO–recursion (SLR) method
with the QMD data. So, the main purpose of our work is to
apply the ab initio QMD and SLR methods to calculate the
properties of liquid rubidium as functions of density over a
wide range of temperatures. This will allow us to estimate the
applicability of the SLR method for calculating the properties
of expanded liquid metals and to explore the nature of changes
in conductivity of liquid Rb.

2. QMD and SLR simulations

We have performed ab initio molecular dynamics simulations
using the Spanish Initiative for Electronic Simulations with
Thousands of Atoms code (SIESTA) [17]. SIESTA is
both a method and a computer program implementation,
designed for performing electronic structure calculations and
ab initio molecular dynamics simulations of molecules and
solids. It uses the standard Kohn–Sham self-consistent
density functional method in the LDA or GGA approximation,
and norm-conserving pseudopotentials in the fully nonlocal
(Kleinman–Bylander) form. Its basis set is a linear
combination of atomic orbitals (LCAO) that allows making the
computer time and memory scale linearly with the number of
atoms, so simulations with several hundred atoms are feasible
with modest workstations. We have chosen a simulation box
of 128 atoms and periodic boundary conditions; seven valence
electrons were considered per atom. The core wavefunctions
are modeled using the pseudopotentials (PT) supplied with
SIESTA. The particle density in this QMD run was fixed by
the total volume of the cubic supercell. Our simulations were
performed for a canonical ensemble with the ion temperature
regulated by a Nosé–Hoover thermostat.

Another simulation method that we extensively used is the
combination of Schommers, LMTO and recursion methods.
Initially the atomic structure was simulated for the clusters
of 4000 atoms by the Schommers method [16]. Experimental
structure factors of Rb obtained by Tamura and co-workers [5]
for different temperatures from 373 K (ρ = 1.5 g cm−3)
up to 2123 K (ρ = 0.59 g cm−3) were used. Then a
supercell of 64 atoms for electronic structure calculations was
selected from this cluster. Local electronic structure and partial
densities of states for separate atoms were found by the LMTO
method [14]. At the same time a 64-atom ensemble is quite
enough for the precise calculations of the thermodynamic
average values and finding the structural characteristics of a
system.

We have used the scalar-relativistic version of LMTO
in ASA. The local density approximation with the von
Barth–Hedin form of the exchange–correlation potential was
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used. For the correct description of a disordered expanded
system, from 30 up to 60 empty spheres were injected in
a cell of 64 Rb atoms. The atomic sphere radii were
chosen according to the charge neutrality condition, and
were adjusted automatically during iterations toward self-
consistency to satisfy this condition. The electronic density of
states was calculated by integration on a Brillouin zone with
the subsequent smoothing of discrete atomic energy levels.
The width of the Gaussian used for smoothing was 0.095 eV.
Finally the averaging over all atoms in the cell was performed.

To obtain the conductivity we have used the first-
principles tight-binding linear muffin-tin orbitals (TB–LMTO)
Hamiltonian [14] in the recursion method [18, 19] to
calculate the electron density of states (DOS) and the electron
eigenstates for 4000- and 8000-particle liquid rubidium
clusters with periodic boundary conditions. Application of
the LMTO–recursion method has allowed us to increase the
size of the explored system. It has made it possible to
study the effect of the localization of electronic states on
liquid metal conductance. Although self-consistency in an
average sense could be achieved for a small number of atoms,
we have relied on the fact that the potential parameters
are the true atomic quantities in the Hamiltonian. They
are obtained from the solution of the wave equation at the
sphere boundary, and hence depend on the volume per atom.
We can obtain this dependence from our supercell LMTO–
ASA calculations for a 64-atom cluster of liquid Rb with
periodic boundary conditions. It might be mentioned that self-
consistent potential parameters practically do not depend on
the close atomic environment and are well approximated by
the formula containing a single parameter—the radius of the
MT sphere [14].

According to the Kubo–Greenwood formula, diagonal
elements of the conductivity tensor at 0 K can be written in
a physically transparent form:

σ j j − e2

�a
n(EF)D(EF). (1)

Here �a is the atomic volume, n(EF) is the DOS falling
on one atom and D(EF) is the diffusivity function, that can be
calculated as follows:

D(EF) = −h̄ lim
ε→0

Im{〈Em |v̂ j Ĝ(EF + i0)v̂ j |Em〉}|Em=EF (2)

where G(E) is the Green function of system and v j is the j th
component of the velocity operator, which can be expressed in
the TB–LMTO approach through the matrix elements of the
TB Hamiltonian and atomic coordinates:

v̂ j = [Ĥ , x̂ j ]
h̄

. (3)

It is easy to see that D(EF) can be represented as the
average local DOS projected on the states v j |Em〉 and can
be calculated using the recursion method. The most time-
consuming part is the search for an eigenvector with definite
energy. We used the filtration procedure described in [20]. The
filtering operator

D̂ = (Ĥ − a)(Ĥ − b)

�2
(4)

Figure 1. The comparison of the diffusion coefficient calculated by
the QMD method with experimental data: 1—data [21]; 2—data
extracted from viscosity measurements [22]; 3—our results.

has been used, where a = EF − �/2, b = EF + �/2, �

is the width of the filtering zone. The parameter � changes
dynamically during the filtration.

3. Results for pair correlation function and dynamic
properties

First, to show the reliability of our QMD simulation we
compare the calculated diffusion coefficient with experimental
data [21] in figure 1.

In figure 2 we compare the pair correlation functions
(PCF) g(R) at 373 and 1873 K calculated by our methods
with the experimental results [5]. From figures 1 and 2 one
can see that calculated and experimental results are in good
agreement, which means that we can rely on our QMD method
in reproducing the structure and properties of liquid rubidium
for a wide range of temperatures. One cannot speculate on
the nature of the MNM transition without information about
the structure of the melt. Traditionally the structure of a fluid
is understood as the structure of the short-range order, which
is defined by the assignment of distance up to the nearest
neighbors (Ri ) and their average number (NR), i.e. those
parameters which can be found from diffraction experiments.
However, determination of these quantities from the diffraction
data is carried out by various methods which give either
certainly overstated or underestimated values of the indicated
parameters.

At the same time, it is necessary to point out that we
can rely on these estimations only near to the melting point
Tm, where the peak of function g(R) is clearly seen and is
symmetrical enough. In the high temperature region, where the
function g(R) is essentially smoothed (right part of figure 2),
the degree of accuracy of these methods is reduced, and the
acceptability of its use requires extra substantiation. For
example, the density variations in the coordination number
Ni which is derived in [5] by integrating the PCF up to the
first-minimum position and in [1] twice up to first-maximum
position are different, especially at high temperatures. In this
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Figure 2. The comparison of the PCF calculation results with experimental data: 1—experimental data [5]; 2—SLR results; 3—QMD results.

Figure 3. The results of multi-Gaussian analysis of the G(R)
distribution at different temperatures.

connection there is a problem of development of adequate
(taking into account specific features) and more precise
methods while evaluating short-range order structure. We
suggest applying the method of Voronoi polyhedra (VP) and
Delaunay simplexes (DS) [16] giving unique information
about the structure of the short-range order and consequently
permitting us to develop more precise measurement for this
purpose. The most specific features of the VP method used in
the present work are the average number of sides (neighbors)
in a Voronoi polyhedron (that corresponds to the number of

Figure 4. Density variation of coordination numbers and
first-neighbor distances: 1—results [8]; 2—our results which are
derived by two-Gaussian analysis of G(R); 3—our results which are
derived by three-Gaussian analysis of G(R).

geometrical neighbors of an atom) and the distribution of the
number of neighbors in the radial distance from the center—the
G(R) distribution, which is similar to

NR = 4πρg(R)R2�R, (5)

which is the number of nearest neighbors in an interval of
distances from R up to R + �R, but it takes into account
only those neighbors which will yield a VP. At small distances,
functions NR and G(R) coincide, and at major R, the function
G(R) promptly decreases to zero.

Using G(R) decomposition into Gaussian multi-peaks
it is possible to analyze the fine short-range order structure
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Figure 5. Temperature dependence of the liquid rubidium phonon
state density.

of expanded metals. We can see the results of such
decompositions on an example of G(R) distribution. The
latter can be submitted with good precision as the total of
two Gaussians which can be interpreted as contributions of the
nearest neighbors and neighbors from the second coordination
sphere.

Only for temperatures higher than 1573 K is there an
appreciable discrepancy of such representation with the actual

distribution function in the 3–4 Å range of distances. This
means the apparent occurrence of additional coordination
relating to formation of the molecular clusters of rubidium.

In figure 3 the result of application of that technique to
the structure analysis of Cs melt compared with data [8] is
shown. Carrying out the dissection of the G(R) distribution
not on two but to three peaks, for temperatures higher than
1573 K the standing of the new peak corresponds to distances
of 4.2–4.8 Å that coincide with bond lengths of neutral and
ionized dimers Rb2 as shown in [24]. The reliable values of
the coordination numbers that we obtained differ from those
of [5]. Figure 4 shows that the coordination number decreases
substantially and almost linearly with density decrease from
1.5 to 1.1 g cm−3 and then shows a strong deviation from
a linear dependence, equal to approximately 6 until reaching
0.7 g cm−3, and after that lowering to values corresponds to
small molecular Rb clusters. Thus, our calculations essentially
change boundaries of areas of rubidium melt density with
various types of structure marked out in [9].

In figure 5 we present the result of phonon density of
states calculations. The details of the calculation can be found
in [25]. It is visible that at low temperatures the phonon
spectrum lies in the low frequencies range and is continuous.
But at higher temperatures we can see the occurrence of a local
mode. In the inset of figure we showed the dependence of the
oscillation frequency for two Rb atoms which are interacting

Figure 6. Rb DOS at 1673 K. Solid line—QMD calculations; dotted line—SLR calculations.
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Figure 7. Temperature dependence of changes of the conductivity of
liquid rubidium: full squares—experimental data [23]; empty
circles—results of our calculation.

by means of the calculated Schommers potential. As we can
see from the inset, this mode corresponds to the interatomic
distance of about 4 Å which is the length of the bond in the
rubidium dimers [24].

4. Electronic properties

Besides the structure dependent properties, electronic proper-
ties such as the DOS were obtained from QMD and SLR meth-
ods (figure 6).

Evidently, the results show good enough agreement.
The DOS at the Fermi energy decreases monotonically with
temperature increasing and does not change much. In the
electron density distribution in the Rb melt at 1673 K one can
see that the electron density becomes strongly inhomogeneous
at this temperature. We can see areas of high density localized
and directed in space, which interconnect 2–3 atoms. This
result is in agreement with data in previous works [10].

The conductivity was calculated using the Kubo–
Greenwood formula (1), (2). The results of our calculations
are presented in figure 7 and are compared with existing
experimental data [23]. The results are fitted to experiment
within error limits of 20%. However, the principal feature of
the present calculation is the fact that it is free from any fitted
parameters. It is obvious from (1) that the conductivity depends
on two factors: the first is the DOS at the Fermi level and the
second is the diffusion mobility D(EF) (2). The behavior of
the diffusion mobility D(EF) indicates a sharp reduction of
the electron mobility leading to electron localization at higher
temperatures.

5. Conclusions

We have performed extensive simulations by QMD and
by the combination of Schommers, LMTO and recursion
(SLR) methods for expanded fluid Rb. The agreement of
the calculated pair correlation functions with experimental

results is good, which means that we can rely on our QMD
method for reproducing the structure and properties of liquid
rubidium for a wide range of temperatures. The theoretical
coordination numbers and next-neighbour distances follow the
experimentally determined trends along the expansion. This
behavior can be explained within a bond-network problem.
The DOS and electronic charge density extracted from the
QMD and SLR simulation methods show qualitatively the
transition from a metallic to a nonmetallic state with the
thermal expansion of the liquid from the melting point to the
region of the critical point. The SLR method is not ab initio
in the strict sense; nevertheless it provides good results on
structural and electronic properties of liquid metals over a
wide temperature region up to the critical point. In addition
this method allows us to obtain large scale models of melts
and calculate such properties as conductivity that cannot be
obtained using small size models. The nature of the abrupt
conductivity decrease in rubidium lies in the appearance of
some sorts of clusters such as Rb2 and Rb3, which possibly
occurs already at temperatures higher than 1400 K up to the
critical point, in agreement with earlier predictions of advanced
chemical models and other QMD simulations.
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